Wing Cuff Design for Cessna CJ1

AAE 415 Project
Purdue University
Saturday, December 10th, 2004

Brian Adams Kevin Clark Greg Davidson Phil Spindler

Contents

- Background of Problem
- Literature Review
- Design Process
- Design Configuration
- Analysis/Results
- Conclusions

Background of Problem

- Low experienced, rich pilots buy new airplane
- Airplane goes into stall and spins
 - ☐ Pilot can't get out of spin
 - "Dr. Killers"
 - How can we design a wing to prevent this?

Mooney: Known for high performance but poor stall characteristics Note: Unmodified leading edge

The Answer: A WING CUFF

- Leading edge modification
 - □ Creates vortex
 - Stops' propagation of separated air across the span
 - □ Able to maintain roll authority while the inboard section is stalled
 - Aiding in spin prevention
- Cosmetically appealing

- Cirrus & Lancair
 - Integrate wing cuff on every single-engine airplane they sell
 - Cirrus is the #1 producer of GA aircraft
 - Aircraft are nearly spin resistant
- Marketing gimmick, or does it actually work?

Pilot Testimony for Wing Cuff

"I rode with the Lancair company pilot when they had the prototype Columbia 400 here in Willman about 3 years ago. I flew the airplane from take off to landing except when he took over to show me how the stall works. We eased back on the power and went into a stall and he held it in and did banks while in stall going down and had FULL aileron control. I was amazed!"

Lancair 400 Wing

- Gene Underland, Pilot

.

Literature Review

- Numerous papers were reviewed in order to validate theoretical models and assumptions
- Papers exhibiting substantial experimental data will be discussed in further
 - □ AIAA Technical Paper A88-50576 21-01 & Journal of Aircraft – Vol. 28, issue 7
 - □ SAE Technical Paper 830720
 - □ NACA-TN-2948
 - □ NASA-TP-2011

AIAA Technical Paper A88-50576 21-01 & Journal of Aircraft – Vol. 28, issue 7

- Cuff Creates a secondary vortex over the wing
 - Prevents separated flow from propagating down the span
 - Attached flow is maintained over the tip and aileron

- Figure shows boundary between attached and separated flow at various angles of attack
 - Addition of cuff creates vortex, delaying stall

- Resultant force coefficient (combination of lift and drag) increased significantly with droop addition.
 - Droop comparable to wing cuff
 - Paper notes the increase in resultant force coeff. Due to increase in lift rather than increase in drag
 - Results in better stall/roll characteristics

NACA-TN-2948

Investigation of Lateral Control Near Stall

- | Smooth flow, indicating direction
- Slightly disturbed flow

- A Disturbed flow, indicating magnitude and direction
- Trregular circular motion, standing up or pointing in a forward direction

NASA-TP-2011

- Effects of Wing-Leading Edge Modifications on a Full-Scale, Low-Wing General Aviation Airplane
- •Cuffed wing C₁ does not rapidly drop
- Insignificant change in drag polar

Configuration

- O Basic wing
- □ Original outboard droop ("B")
- ♦ Original outboard droop ("B") + fillet droop

- Light Jets are popular among rich, 'inexperienced' pilots as an upgrade from their Cirrus or Lancair
- Can we design a wing cuff to prevent spin resistance on a Light Jet?
 - Cessna CJ1 smallest available
 Light Jet on the market today
 - Many emerging companies are designing smaller 'Very Light Jets'
 - So far, none have incorporated wing cuffs

Design Process

- Objective: Design Wing Cuff for Cessna CJ1 to increase stall and roll characteristics
 - □ Wing cuff to be approximately same dimensions as aileron
 - Analyzed different wing configurations at various angles of attack
 - Stock wing NACA 23014
 - Wing with Cuff Addition Cuff dimensions iterated
- Design Tools
 - CMARC
 - FLUENT
 - □ XFoil
 - □ MatLab

Design Configuration

Stock Wing

CMARC Analysis

- Demonstrated vortex generation at cuff
 - □ Also showed vortex at wing tip
- Software was not able to show separation
 - □ Limited use for project design

Fluent Grid Creation

Grid creation for Cuffed Airfoil

Grid creation for Stock Airfoil

FLUENT Analysis

Contour of Turbulent Kinetic Energy

Velocity Vectors of the Cuff

XFoil/MatLab Analysis

- Analyzed both stock wing and wing cuff airfoil sections at various angles of attack
 - Aileron Up, Aileron Down, and Aileron Neutral configurations
- Assumptions
 - Wing cuff section to have completely attached flow and wing root section to be completely separated
 - Attached flow C_i obtained from XFoil
 - Separated flow C₁ ~ 40% drop from C₁ max

w

XFoil CI Prediction – 14.5°

C _I Root - Separated	1.0 (Abbott & von Doenhoff)
C _I Cuff - Aileron Nominal - Attached	1.69
C _I Cuff - Aileron Nominal - Separated	1.02
C _I Cuff - Aileron Up - Attached	0.81
C _I Cuff - Aileron Up - Separated	0.49
C _I Cuff - Aileron Down - Attached	1.96
C _I Cuff - Aileron Down - Separated	1.18 Cuff
1	Aileron Down Aileron Up
-0.1 —	
1 1 1 1 1 0 0.1 0.2 0.3 0.4	1 1 1 1 1 0.5 0.6 0.7 0.8 0.9

MatLab Results

w

Design Case – CJ1 Wing

Platform Area Increase	1 %
Cuff Span	40 %
Cuff Chord Increase	3 %
Aileron Up M _{root} Increase	33 %
Aileron Down M _{root} Increase	48 %

10

Conclusions

- Cuff improves Cessna CJ1 stall/roll characteristics
 - ☐ Flow remains attached over the aileron
- Cuff does not increase drag
- Increase in C_L due to increase in platform area could be prevented with wing taper