Commercial Laser Communication Terminal Optic Mount Design

Phillip Spindler Aeronautical and Astronautical Engineering Purdue University

LaserCom

- Spacecraft, Satellites, Aircraft, and Ground Capabilities
- High Data Rates
- More Secure Transmissions

CLCT Demo

Mount Assembly

- Tip-Tilt Mount
- Titanium Mount and Bezel
- Applicable to Reflecting and Refracting Optics
- Adjustable to Different Optic Shapes and Sizes
- Assembly Weight Approx. 0.18 lb (80 g)

Mount Design

- Basic Dimensions: 2.5" x 2.3" x 1.9"
- Solid Titanium Piece
- ±1° Flexure Movement on Two Axis
- Modeled After CLCT Demo Mount

Bezel Design

- Basic Dimensions: 1.3" x 1.3" x 0.2"
- 1/16" Thick
- Solid Titanium Piece
- Circumferential Bond
- Athermal Design

Bonding Set-Up

- Optic Bonded with PR 1564
- 0.4 mm Bond Thickness
 - Minimizes Thermally Induced Stress on Optic

Test Set-Up

- Testing
 - Optic to Bezel Adhesion
 - Bezel to Mount Interface
 - Mount Flexure to Mount Base
 - Mount Base to Base Plate Interface

- Thermal Cycles
 - Survivability
 - Operational Temperature
- Vibration

Mirrored Areas (Ni Plated)

Future Work

- Release Drawings
- Prepare Bonding and Test Procedures
- Manufacture and Assemble Hardware
- Perform Vibration and Thermal Tests

What I Learned

- SolidWorks
- Design Process
- Effort Put into Flight Hardware Design
- How to Make Drawings (GD&T)

Thank You

Mike Davis Miro Ostaszewski Scott Woolaway Beth Kelsic Suzanne Delchamps

Questions?

BLACKSLIDE

Thermally Induced Stress on Optic

- Assume the adhesive only moves due to optic and bezel movement
- Calculate the shear stress on the optic based on the change in the angle of the glue wrt the optic
- Calculate the original and expanded volumes of the adhesive
- Compare the calculated volume with the volume the adhesive wishes to be based on its CTE

Insertion Holes

- n : the number of holes required
- h : the height of the optic
- r : the radius of the optic
- θ : the angle between the injection holes

x : the fraction of 2h that overlaps for each injection point

$$n = \frac{\pi r}{h(1-x)}$$